ABSTRACT

The task of extracting knowledge from databases is quite often performed by

machine learning algorithms. The majority of these algorithms can be applied

only to data described by discrete numerical or nominal attributes (features).

Discretization is a process to transform a continuous attribute's value into a

finite number of intervals and associate with each interval a numerical, discrete

value. For mixed-mode (continuous and discrete) data, discretization is usually

performed prior to the learning process, called pre-processing.

CAIM (Class-Attribute Interdependence Maximization) is one of

discretization algorithm design for supervised learning. It maximizes the class-

attribute interdependence and to generate a possibly minimal number of discrete

intervals. The algorithm does not require the user to predefine the number of

intervals. It considered as CAIM's superiority against other discretization

algorithms for supervised learning.

This final project implements CAIM discretization methode for supervised

learning to several datasets. C5.0 algorithm is used to generate classification rules

from data discretized by CAIM. The test performed using CAIM and six other

state-of-the-art discretization algorithms show that the accuracy of generated

rules is – on average - higher and the number of rules is lower for data discretized

by CAIM when compared to data discretized using six other discretization

algorithms.

Key word: CAIM, class-attribute interdependence maximization, discretization

ii