Informasi Umum

Kode

18.04.1408

Klasifikasi

006.312 - Data mining

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Mining-clustering Analysis

Dilihat

387 kali

Informasi Lainnya

Abstraksi

Seiring berkembangnya jaringan sosial, banyak media-media di internet yang menyediakan sarana untuk berhubungan dengan orang lain, salah satunya adalah Twitter. Twitter memungkinkan terbentuknya sebuah komunitas. Komunitas berkembang setiap saat, seiring dengan berkembangnya interaksi antar pengguna di Twitter, oleh karena itu diperlukan alat untuk mendeteksi evolusi dari komunitas tersebut. DynamicNet merupakan algoritma untuk mendeteksi evolusi komunitas yang mendefinisikan evolusi komunitas dengan simpel namun mencakup banyak bidang, yang mana sebelum mendeteksi evolusi dilakukan deteksi komunitas menggunakan algoritma Louvain. Pada jurnal ini dilakukan percobaan untuk mengetahui parameter apa sajakah yang mempengaruhi hasil dari algoritma DynamicNet, mulai dari jumlah data dan threshold. Hasil yang didapat dari penelitian ini adalah algoritma DynamicNet dapat digunakan untuk mendeteksi evolusi komunitas di media sosial Twitter. Didapatkan juga bentuk kerateristik data yang ideal agar algoritma DynamicNet dapat berjalan dengan optimal, yaitu jumlah data yang banyak dengan kepadatan hubungan yang tinggi, komunitas dengan kualitas (Modularity) yang tinggi dan nilai threshold yang berada di rentan nilai Normalized Mutual Information (NMI). Pada penelitian ini NMI tertinggi dicapai pada 1000 data simpul yang bernilai 0.16.

  • CS4333 - DATA MINING

Koleksi & Sirkulasi

Seluruh 1 koleksi sedang dipinjam

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MUHAMMAD RIZKY RIANDI GUNAEDI
Jenis Perorangan
Penyunting IMELDA ATASTINA, ANISA HERDIANI
Penerjemah

Penerbit

Nama Universitas Telkom
Kota Bandung
Tahun 2018

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi