Informasi Umum

Kode

20.04.1036

Klasifikasi

006.3 - Special Computer Methods- Artificial intelligence

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Artificial Intelligence

Dilihat

223 kali

Informasi Lainnya

Abstraksi

An automatic speaker verification (ASV) is one of the challenging problem in speech processing since there are so many models of machine learnings those capable of synthesizing a fake speech from a given text. This paper discusses the impact of SpecAugment to state of the art methods such as Gaussian Mixture Models (GMM) and Deep Neural Networks (DNNs). Some experiments on a speech dataset sampled from the ASVSpoof2019, which is specially made to tackle the threat of spoofing, show that GMM produces an Equal Error Rate (EER) of 19.0% that is better than the DNNs system with EER of 24.0%. However, after combining with a traditional augmentation technique, the DNN gives a better EER of 15.3% than GMM with EER of 15.7%.

  • MUG1E3 - ALJABAR LINEAR
  • MUG2D3 - PROBABILITAS DAN STATISTIKA

Koleksi & Sirkulasi

Seluruh 1 koleksi sedang dipinjam

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MUHAMMAD YUSUF FAISAL
Jenis Perorangan
Penyunting SUYANTO, NIKEN DWI WAHYU CAHYANI
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2020

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi