Informasi Umum

Kode

21.04.3801

Klasifikasi

004 - Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika, Hardware Komputer

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Analysis

Dilihat

256 kali

Informasi Lainnya

Abstraksi

Sifat pasar saham yang fluktuatif dan non-linier kerap mempengaruhi stabilitas keuntungan investor. Berbagai metode pembelajaran mesin, seperti neural network, Support Vector Machines (SVM), dan Hidden Markov Model (HMM), telah banyak diterapkan untuk mengidentifikasi ketidakpastian pada harga dan kondisi pasar saham. Dalam penelitian ini, sebuah HMM diimplementasikan untuk memprediksikan harga dan kondisi pasar saham. Prosedur prediksi harga dan kondisi pasar saham dimulai dengan menghasilkan out-of-sample data sebagai observable data collection untuk memprediksi harga dan kondisi pasar saham pada periode tertentu. Kemudian sepuluh indikator teknis dihitung dan digunakan sebagai observation sequence dalam memprediksi harga penutupan saham untuk periode harian, mingguan, dan bulanan menggunakan algoritma forward. Kemudian, algoritma Viterbi digunakan untuk memprediksi kondisi pasar dengan menggunakan indikator teknis sebagai observation sequence. Hasil evaluasi nilai error dari masing-masing prediksi harga dan kondisi pasar saham menunjukkan bahwa, HMM merupakan model yang menjanjikan untuk memprediksi harga saham dan kondisi pasar saham.

Koleksi & Sirkulasi

Seluruh (1) koleksi tidak tersedia

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama JOSHUA GALILEA
Jenis Perorangan
Penyunting IRMA PALUPI, INDWIARTI
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2021

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi