Informasi Umum

Kode

22.04.3432

Klasifikasi

551.63 - Weather forecasting

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Weather Forecasting, Machine - Learning,

Informasi Lainnya

Abstraksi

<p>Tingginya jumlah kawasan industri dan pemukiman  mengurangi ruang terbuka hijau di Jakarta. Kondisi ini meningkatkan suhu udara dan berkontribusi terhadap perubahan iklim di Jakarta dan sebagian besar kota besar lainnya di Indonesia. Oleh karena itu, diperlukan model prediksi suhu udara yang akurat untuk mendukung aktivitas masyarakat sehari-hari. Di sisi lain, pemerintah juga dapat menggunakan prediksi suhu udara untuk menentukan regulasi untuk menekan perubahan iklim. Dalam penelitian ini dikembangkan model prediksi suhu udara menggunakan dua model machine learning yaitu Long Short-Term Memory (LSTM) dan Prophet. LSTM adalah varian dari Recurrent Neural Networks (RNN) klasik dengan tambahan blok memori yang menyimpan informasi jangka panjang. Prophet model adalah model regresi yang dikembangkan oleh Facebook. Model ini dipilih karena dapat menangani data stokastik seperti suhu udara. Prediksi suhu udara dihitung berdasarkan histori data sekuensial suhu udara. Keakuratan prediksi diukur dengan menggunakan nilai RMSE dan Koefisien Korelasi. Hasil penelitian menunjukkan bahwa LSTM berkinerja lebih baik untuk prakiraan jangka pendek, yaitu 2 hingga 48 jam, dengan nilai RMSE antara 0,31 hingga 0,69. Di sisi lain, model Prophet cocok untuk prediksi jangka panjang, yaitu 72 hingga 168 jam, dengan RMSE antara 0,80 dan 0,89.</p>

  • CS3243 - KECERDASAN MESIN DAN ARTIFISIAL
  • CII3C3 - PEMBELAJARAN MESIN

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama MOHAMMAD DAFFA HARIS
Jenis Perorangan
Penyunting Didit Adytia
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2022

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi