Informasi Umum

Kode

25.04.418

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Recommender Systems

Dilihat

110 kali

Informasi Lainnya

Abstraksi

<strong>Diabetes is a growing chronic health issue driven by lifestyle changes, urbanization, and poor dietary habits. Managing diabetes requires not only medical intervention but also significant lifestyle adjustments, particularly through a healthy and balanced diet. However, existing menu recom-mender systems often fail to consider the importance of a low glycemic index (GI) in meal planning, and they typically lack detailed information such as ingredients, recipes, and nutritional facts. This study seeks to address these short- comings by developing an ontology-based menu recommender system using the Ontology Web Language (OWL) to improve dietary adherence and reduce complications associated with diabetes through personalized low glycemic index menu recommendations. By modeling food data with OWL, the system organizes information about food items, glycemic index values, and nutritional properties to generate personalized recommendations. Evaluation metrics showed a precision of 0.767, recall of 1.0, accur

  • CII4H3 - SISTEM PEMBERI REKOMENDASI
  • CII4E4 - TUGAS AKHIR

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama ATHALIA MALIKA NAJAH
Jenis Perorangan
Penyunting Z. K. Abdurahman Baizal
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi