Informasi Umum

Kode

25.04.426

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Science

Dilihat

54 kali

Informasi Lainnya

Abstraksi

The 2024 Regional Elections in Indonesia have ignited vigorous public discourse, rendering sentiment analysis an essential instrument for comprehending voter behavior, candidate popularity, and campaign plans. This research utilizes a novel methodology, incorporating a hybrid model of Convolutional Neural Networks (CNN) and Bidirectional Gated Recurrent Units (BiGRU), enhanced by Genetic Algorithms, to assess public mood. This research also investigates the use of FastText features to increase sentiment classification accuracy. The dataset includes 60,000 Indonesian tweets collected using keywords linked to the 2024 Regional Election. In this research, CNN is utilized to extract spatial features, BiGRU to capture temporal dynamics, and FastText and Term Frequency-Inverse Document Frequency (TF-IDF) to represent features, all of which are GA optimized. The experimental results demonstrate that GA optimization has a considerable effect on model performance. The CNN-BiGRU + GA models had the highest accuracy of

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama HEMIA LISA SIMBOLON
Jenis Perorangan
Penyunting Erwin Budi Setiawan
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi