Informasi Umum

Kode

25.04.469

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Image Processing - Computer Vision

Dilihat

67 kali

Informasi Lainnya

Abstraksi

Accurate estimation of carbon stocks is vital for management. While field-based methods often face limitations in coverage, remote sensing approaches present a more effective alternative. Recent advancements in deep learning have enabled the application of Convolutional Neural Networks (CNNs) to analyze high-resolution drone imagery in carbon stock estimation. This study assesses the performance of VGG-16 and ResNet-20 for regression tasks, employing Optuna for hyperparameter optimization to enhance prediction accuracy. The experimental findings reveal that VGG-16 achieved an R² score of 0.645, with lower RMSE and MAE values than ResNet- 20. Furthermore, the study highlights significant challenges, such as dataset imbalance and feature extraction in regions with high carbon stocks. Future research may investigate hybrid learning techniques, ensemble models, and multispectral data fusion to improve model estimation accuracy and generalization.

  • CCH4D4 - TUGAS AKHIR

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama CAECARRYO BAGUS DEWANATA
Jenis Perorangan
Penyunting Erwin Budi Setiawan, Gamma Kosala
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi