Informasi Umum

Kode

25.04.482

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Cyber Security

Dilihat

125 kali

Informasi Lainnya

Abstraksi

The proliferation of audio deepfakes, generated using advanced technologies such as WaveNet and Generative Adversarial Networks (GANs), poses significant threats to digital security, including identity theft, misinformation, and fraud. To address these challenges, this study proposes an end-to end framework for audio deepfake detection that leverages Mel Spectrograms as input features and the Xception model as the backbone architecture. The methodology includes optimized preprocessing techniques, such as normalization and resizing, and robust data augmentation strategies to enhance feature quality and model generalization. The framework was evaluated using the Automatic Speaker Verification (ASV) spoof 2021 dataset, achieving a high test accuracy of 95.86% with balanced precision, recall, and F1-scores for ‘real‘ and ‘fake‘ classifications. Comparative analysis demonstrated that the Xception model outperformed ResNet50 and MobileNetV2 in both accuracy and generalization. While the results highlight the robust

  • CII3E3 - KEAMANAN SIBER
  • CS3243 - KECERDASAN MESIN DAN ARTIFISIAL
  • CCH4D4 - TUGAS AKHIR

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama DZAMIR AKMAL
Jenis Perorangan
Penyunting Vera Suryani
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi