Informasi Umum

Kode

25.04.7129

Klasifikasi

610.28 - Biomedical Engineering

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Bioinformatics

Dilihat

22 kali

Informasi Lainnya

Abstraksi

<p>Osteoporosis, a bone disease affecting over 200 million people worldwide, presents a significant therapeutic challenge, with Cathepsin K (CatK) being a primary target for inhibitor development due to its role in bone resorption. While conventional drug discovery methods are often slow and costly, machine learning offers a promising alternative. This study addresses the need for more accurate predictive models by developing a robust framework for assessing CatK inhibitor bioactivity. A Long Short-Term Memory (LSTM) network, chosen for its proficiency in handling complex sequential data typical of molecular structures, was optimized using a Simulated Annealing (SA) metaheuristic. The model was trained on a dataset of 1568 molecules from the ChEMBL database, with bioactivity classified based on <!--[if gte msEquation 12]><m:oMath><b style='mso-bidi-font-weight:normal'><i style='mso-bidi-font-style:normal'><span lang=EN-US style='font-size:10.0pt;font-family:"Cambria Math",serif; mso-fareast-font-family:SimSun;mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>pIC</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>??</m:r></span></i></b></m:oMath><![endif]--> ? values into four categories: Potent (<!--[if gte msEquation 12]><m:oMath><b style='mso-bidi-font-weight:normal'><i style='mso-bidi-font-style:normal'><span lang=EN-US style='font-size:10.0pt;font-family:"Cambria Math",serif; mso-fareast-font-family:SimSun;mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>pIC</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>??</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr> ? </m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>9</m:r></span></i></b></m:oMath><![endif]--> ), Active <!--[if gte msEquation 12]><m:oMath><b style='mso-bidi-font-weight:normal'><i style='mso-bidi-font-style:normal'><span lang=EN-US style='font-size:10.0pt;font-family:"Cambria Math",serif; mso-fareast-font-family:SimSun;mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>(</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>9</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr> > </m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>pIC</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>??</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr> ? </m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>7</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>)</m:r></span></i></b></m:oMath><![endif]--> , Intermediate <!--[if gte msEquation 12]><m:oMath><b style='mso-bidi-font-weight:normal'><i style='mso-bidi-font-style:normal'><span lang=EN-US style='font-size:10.0pt;font-family:"Cambria Math",serif; mso-fareast-font-family:SimSun;mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>(</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>7</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr> > </m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>pIC</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>??</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr> ? </m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>6</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>)</m:r></span></i></b></m:oMath><![endif]--> , and Inactive <!--[if gte msEquation 12]><m:oMath><b style='mso-bidi-font-weight:normal'><i style='mso-bidi-font-style:normal'><span lang=EN-US style='font-size:10.0pt;font-family:"Cambria Math",serif; mso-fareast-font-family:SimSun;mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>(</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>pIC</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>??</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr> < </m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>6</m:r><m:r><m:rPr><m:scr m:val="roman"/><m:sty m:val="bi"/></m:rPr>)</m:r></span></i></b></m:oMath><![endif]--> . The SA-optimized LSTM model significantly outperformed three baseline LSTM models, which achieved a peak average accuracy of 0.77. The optimal SA-tuned configuration (the col_rate95 scheme) attained an average accuracy and F1-score of 0.81. Notably, the model demonstrated exceptional performance in identifying Potent inhibitors, achieving an F1-score of 0.92. However, a key limitation was the difficulty in distinguishing between the Active and Intermediate classes, where misclassifications were more frequent. This research highlights the effectiveness of the SA-LSTM approach in accelerating the discovery of high-bioactivity compounds for osteoporosis treatment. Future work could focus on enhancing model robustness by integrating additional molecular descriptors or exploring alternative deep learning architectures to improve classification accuracy.</p>

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama ALFIANSYAH HAFIDZ ARBI PUTRA
Jenis Perorangan
Penyunting Isman Kurniawan
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi