IMPLEMENTASI SISTEM PENDETEKSI CACAT PADA KAYU MENGGUNAKAN METODE GABOR WAVELET TRANSFORM

MUHAMMAD PANJI KUSUMA PRAJA

Informasi Dasar

101 kali
15.04.422
681.2
Karya Ilmiah - Skripsi (S1) - Reference

Pemanfaatan kayu sebagai bahan konstruksi di Indonesia menjadi pilihan utama bagi masyarakat. Hal ini disebabkan oleh sifat kayu yang mudah didapat, mudah dalam pengerjaan dan memiliki nilai estetika dari motif yang dimiliki kayu-kayu tertentu. Pada umumnya, proses pengklasifikasian atau pemilahan kayu normal dan kayu cacat masih dilakukan secara manual dengan mengamati performa dari tiap kayu yang akan diproses. Hal ini bukan merupakan suatu proses yang efisien, maka dibutuhkan suatu solusi untuk mengklasifikasikan cacat pada kayu dengan bantuan computer vision, sehingga didapatkan efisiensi waktu dalam pemilihan kayu normal dan kayu cacat. Oleh karena permasalahan dan kebutuhan tersebut, diperlukan pengklasifikasian tentang deteksi cacat pada kayu. Dalam hal ini, pengklasifikasian kayu diperoleh dari citra permukaan kayu. Citra dari permukaan kayu akan dicek satu per satu untuk menentukan kelayakan dari kayu untuk proses pengerjaan lebih lanjut. Adapun yang termasuk dalam kondisi cacat adalah kayu yang berlubang, mempunyai mata kayu (motif bulat berwarna lebih gelap), retak atau belah. Pada tugas akhir ini, simulasi deteksi cacat pada kayu dilakukan dengan Digital Image Processing. Hal ini dilakukan dengan metode ekstraksi ciri menggunakan Gabor Wavelet Transform. Citra dari setiap permukaan kayu akan diambil gambar melalui kamera, lalu dilakukan ekstraksi ciri dengan menggunakan metode Gabor Wavelet. Citra hasil ekstraksi ciri akan diklasifikasi menggunakan metode K-nearest neighbor, dimana nilai k dari klasifikasi ini akan disesuaikan sehingga menghasilkan akurasi yang paling baik. Berdasarkan implementasi dan pengujian yang dilakukan, Akurasi terbaik yang dicapai oleh klasifikasi K-NN dengan pendekatan Euclidean distance adalah sebesar 70 % pada pengujian 180 citra dan akurasi sebesar 75.6 % pada pengujian 500 citra. Waktu komputasi rata-rata yang dibutuhkan untuk tiap citra selam 1,27 detik.

Kata kunci : cacat kayu, computer vision, Gabor Wavelet, K-NN.

Subjek

DIGITAL IMAGE PROCESSING
 

Katalog

IMPLEMENTASI SISTEM PENDETEKSI CACAT PADA KAYU MENGGUNAKAN METODE GABOR WAVELET TRANSFORM
 
var.p.: pdf file.; daftar pustaka + lam.
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MUHAMMAD PANJI KUSUMA PRAJA
Perorangan
Ratri Dwi Atmaja, Suci Aulia
 

Penerbit

Universitas Telkom, S1 Teknik Telekomunikasi
Bandung
2015

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini