Social Network berisi peta individu-individu dan relasi yang terjadi di antara mereka. Analisis hubungan antar individu, bagaimana hubungan tersebut terjadi, dan konsekuensinya dapat dipelajari menggunakan teknik Social Network Analysis. Salah satu contoh penerapannya yaitu pada centrality measurement yang digunakan untuk menentukan pengguna yang berpengaruh dalam penyebaran informasi. Salah satu metode yang dapat digunakan adalah betweenness centrality, node yang paling sering dilewati shortest path merupakan node yang memiliki centrality paling tinggi. Pada tugas akhir ini menerapkan salah satu algoritma dari betweenness centrality, yaitu algoritma Geisberger.
Algoritma Geisberger digunakan untuk menghitung betweenness centrality pada graf yang berbobot dan tidak berarah dengan menggunakan metode Linear Scaling. Tujuannya untuk menentukan ranking user yang berpengaruh dalam social media Twitter dan yang kedua untuk mengetahui pengaruh nilai parameter k dalam perhitungan nilai centrality. Hasil pengujian menunjukan bahwa metode Linear Scaling dengan dapat digunakan untuk menentukan ranking user yang berpengaruh dalam penyebaran informasi di Twitter. Hasil yang kedua yaitu nilai k berpengaruh terhadap hasil perangkingan, semakin besar nilai k maka hasil perangkingan semakin stabil. Selain nilai k, faktor lain yang mempengaruhi perangkingan yaitu egde dan penghapusan node.