Twitter merupakan jejaring sosial yang populer saat ini. Beragam informasi dapat diambil dari Twitter. Salah satunya adalah tweet yang mengabarkan mengenai kondisi kemacetan suatu lalu lintas. Akan tetapi, sumber yang mengabarkan kondisi lalu lintas tersebut tidak hanya satu dan tidak saling terintegrasi. Sehingga informasi yang ada menjadi kurang bermanfaat karena seseorang cenderung malas ketika harus melakukan pencarian data secara manual dari satu sumber ke sumber yang lain.
Tugas akhir ini bertujuan untuk melakukan hasil klasifikasi tweet kondisi jalan pada twitter yang telah dikumpulkan dengan melihat isi dari tweet tersebut. Data diklasifikasikan menjadi 2 kondisi, yaitu macet atau ramai lancar. Metode yang digunakan pada penelitian ini adalah Support Vector Machine (SVM). Metode ini dipilih karena mampu mengklasifikasikan data berdimensi tinggi yang dalam konteks tugas akhir ini adalah data berupa teks. Dari uji skenario yang dilakukan, hasil rata-rata akurasi berada diatas nilai 90%.