Abstrak
Penelitian tentang tracking dan deteksi manusia secara realtime sangat pesat dewasa ini. Metode yang berkembang selama ini bisa diterapkan pada kasus perhitungan manusia secara otomatis baik di dalam ruangan atau di luar ruangan. Perkembangan untuk menaikkan tingkat akurasi pada perhitungan manusia, beberapa diantaranya ditujukan pada substraksi background, tracking dan deteksi manusia.
Pada tugas akhir ini akan menerapkan non-parametric background subtraction yaitu dengan menggunakan Vumeter, metode pendeteksian Viola Jones dan metode Kanade-Lucas Tomasi (KLT) untuk features tracking. Vumeter diajukan sebagai metode substraksi background yang memiliki performa tinggi dan cocok untuk sistem yang berbasis realtime. Sama halnya dengan Vumeter, metode Viola Jones juga diterapkan karena memiliki performa tinggi dalam pendeteksian. Hasil deteksi akan langsung ditracking oleh KLT sehingga sistem akan selalu membaca keberadaan orang pada setiap frame. Jika orang yg terdeteksi berjalan melewati garis hitung atau disebut line of interest (LOI) dan orang tersebut berjalan ke arah kamera, maka sistem akan menghitungnya.
Dengan metode-metode tersebut, sistem dapat mendeteksi manusia dengan tingkat akurasi 86% untuk data uji satu orang dan 71,8% untuk data uji tujuh orang. Performa sistem cukup tinggi dimana rata-rata pemrosesan video uji satu orang sampai dengan tujuh orang mencapai 14 – 23,7 fps.
Kata kunci : non parametric, background subtraction, perhitungan orang, KLT, Vumeter, features tracking