Indeks harga saham merupakan indikator yang berfungsi untuk mengetahui fluktuasi (keadaaan) harga saham naik atau turun. Untuk memperkirakan fluktuatif indeks harga saham dilakukan prediksi.
Salah satu algoritma prediksi adalah Time Variant Fuzzy Time Series (TVFTS). TVFTS telah dibangun dan dikombinasi dengan algoritma Particle Swarm Optimization (PSO). Dalam penelitian ini, kombinasi dari TVFTS dan algoritma PSO diterapkan untuk memprediksi indeks LQ 45 dan IHSG. Hasil prediksinya dibandingkan dengan hasil prediksi menggunakan TVFTS tanpa PSO.
Hasil dari beberapa ujicoba pada tugas akhir ini menunjukkan bahwa prediksi indeks harga saham menggunakan menggunakan kombinasi algoritma PSO dan TVFTS memiliki Mean Absoute Deviation sebesar 3,73492 dan Mean Absolute Percent Error sebesar 1,461%. Sedangkan untuk TVFTS tanpa PSO memiliki Mean Absoute Deviation 3,90169 dan Mean Absolute Percent Error 1,557%. Dari hasil percobaan tersebut dapat disimpulkan bahwa kombinasi algoritma TVFTS dengan PSO memiliki hasil lebih baik dibandingakan algoritma TVFTS tanpa PSO.
Kata Kunci: Fuzzy Time Series, Particle Swarm Optimization, Prediksi, Indeks Harga Saham