Data merupakan sumber informasi yang berguna untuk kelangsungan hidup manusia. Untuk menjadikan data tersebut bermanfaat, diperlukan suatu metode yang dapat menggali informasi penting dari data yang ada. Salah satu metode penarikan informasi dari sekumpulan data dikenal dengan Data Mining. Teknik menambang informasi pada Data Mining pun beragam, salah satunya Clustering. Clustering merupakan metode pengelompokkan data yang memiliki kesamaan atribut kedalam satu kelompok dengan aturan tertentu. Pada penelitian ini algoritma Clustering yang digunakan adalah Density Based Spatial Clustering Application with Noise (DBSCAN). DBSCAN merupakan algoritma Cluster yang bersifat density-based, yaitu mengelompokkan data berdasarkan kepadatannya ke dalam satu kelompok, dan data yang jarang pada kelompok lainnya. Untuk mengelompokkan data dengan dimensi yang tinggi, diperlukan perangkat yang dapat meminimalkan biaya komputasi. GPU (Graphics Processing Unit) memungkinan mengolah data dengan dimensi tinggi dalam waktu yang singkat. Jika GPU dikombinasikan dengan DBSCAN pengelompokkan data dapat menghasilkan performansi kerja algoritma yang baik dengan akurasi yang tinggi serta biaya komputasi yang minimum. Salah satu metode penerapan GPU pada DBSCAN dengan melakukan perhitungan jarak antar data secara paralel di GPU. Hasil perhitungan ini mampu menghemat biaya komputasi rata – rata sebesar 1.035921875 detik untuk data dengan dimensi 15154 dan 0.063893878 detik untuk data dengan dimensi 12600. Selain itu pada evaluasi performansi, GPU menghasilkan nilai yang cukup baik dibandingkan dengan algoritma serialnya.