Volatilitas merupakan instrument penting dalam opsi saham. Hal tersebut dikarenakan volatilitas memiliki hubungan yang kuat dengan harga opsi saham. Dengan menentukan nilai volatilitas di masa mendatang, maka kita dapat mengetahui harga opsi di waktu mendatang. Salah satu cara menentukan nilai volatilitas dengan menggunakan data volatilitas yang ada, disebut sebagai implied volatility. Implied volatility dapat ditentukan dengan menyamakan harga teoritis dengan harga pasar. Model Black-Scholes adalah salah satu model teoritis untuk menentukan harga opsi saham. Fungsi implisit dari harga teoritis dengan harga pasar, maka dapat ditentukan nilai volatilitas.
Untuk mengoptimalkan nilai volatilitas, maka digunakan Particle Swarms Optimization (PSO) sebagai algoritma optimasi. Pencarian dengan PSO didasarkan pada inteligence unggas dalam mencari sumber makanan. Terdapat kecepatan dan posisi dalam pencarian menggunakan PSO untuk setiap partikel dalam menemukan nilai optimal.
Hasil dari metode implied volatility dan Particle Swarms Optmization menunjukkan bahwa nilai volatilitas yang dihasilkan adalah nilai volatilitas optimal dan konvergen. dimana semakin dekat jarak antara lowerbound dan upperbound maka semakin cepat nilai menuju konvergen.