Berat badan merupakan salah satu parameter yang memberikan gambaran pada massa tubuh. Pada pengukuran berat badan yang telah dilakukan secara manual yaitu dengan menggunakan alat penimbang berat badan (timbangan injak) didapatkan hasil timbangan berat badan yang berbeda-beda, dikarenakan ketika posisi telapak kaki diatas alat penimbang berat badan (timbangan injak) tidak sesuai atau tidak tepat pada titik tumpu alat penimbang berat badan (timbangan injak). Berat badan harus selalu dimonitor karena berat badan merupakan parameter antropometri yang sangat tidak stabil guna mengatasi kecenderungan penurunan atau penambahan berat badan yang tidak dikehendaki (berat bedan tidak normal).
Pada tugas akhir ini, penulis membahas mengenai teknik untuk mengklasifikasikan tinggi badan dan berat badan manusia melalui basis tekstur cap telapak kaki dengan menggunakan pengolahan citra digital.Sehingga pada tugas akhir ini akan dirancang simulator untuk mengukur berat badan, dimana kelebihan lainnya selain mengukur berat badan adalah mengukur tinggi badan menggunakan data cap telapak kaki. Metode yang digunakan dalam penelitian tugas akhir ini adalah metode Discrete Wavelet Transform (DWT) sebagai ektraksi ciri dan metode Support Vector Machine Multi Class (SVM-MC) sebagai klasifikasi dengan menggunakan aplikasi MATLAB.
Dalam sistem aplikasi ini, menggunakan data latih sebanyak 89 citra dan data uji sebanyak 26 citra. Waktu komputasi yang tercepat pada sistem ini dengan menggunakan metode klasifikasi OAO pada citra 300x264 piksel yaitu 0.17165 detik dengan level dekomposisi 8. Tingkat akurasi terbaik dengan metode klasifikasi OAO untuk tinggi badan sebesar 98.27% dengan menggunakan citra yang berukuran 1200x1056 piksel. Sedangkan, tingkat akurasi terbaik dengan metode klasifikasi OAO untuk berat badan sebesar 91.17% dengan menggunakan citra yang berukuran 300x264 piksel.
Kata Kunci: biometrik, footprint, thresholding, DWT, SVM-MC