Film horor merupakan film yang dirancang untuk menciptakan atau memberikan situasi dan keadaan yang menakutkan, mengejutkan, menyeramkan dan teror untuk para penikmatnya. Hal ini memberikan rangsangan tersendiri terhadap otak karena adanya fluktuasi ion pada neuron otak yang dapat terbaca oleh alat electroencephalograph (EEG). Berdasarkan rentang frekuensinya sinyal otak dibagi menjadi 5 jenis pola sinyal otak yaitu alpha, beta, theta, delta, dan gamma dengan frekuensi berbeda-beda dan dimana masing-masing sinyal menandakan kondisi yang berbeda-beda.
Pada penelitian kali ini metode Principal Component Analysis (PCA) sebagai ekstraksi ciri dan metode klasifikasi menggunakan K-Nearest Neighbor (K-NN) dengan masukan berupa data sinyal EEG. Pemilihan metode tersebut ditujukan untuk membagi data sinyal menjadi beberapa komponen berdasarkan frekuensinya dan mengklasifikasikan gelombang otak tersebut untuk memperoleh keluaran berupa kondisi emosional seseorang.
Tujuan dari penelitian ini adalah untuk mengetahui perbedaan pola sinyal alpha dan beta pada seseorang pada saat diberi stimulus berupa potongan film horor serta didukung dengan sinkronnya detak jantung, ekspresi wajah atau tingkah laku. Pada penelitian ini hasil perbandingan sinyal beta yang cenderung muncul berada dikanal AF7 dan AF8, sedangkan untuk sinyal alpha yang cenderung muncul berada pada kanal TP9 dan TP10. Akurasi terbaik dari penelitian dengan 2 skenario mencapai 77,7% untuk sinyal alpha dan 77,7% untuk sinyal beta.
Kata kunci: EEG, alpha beta, Principal Component Analysis, KNN