Kanker menjadi salah satu penyebab kematian paling banyak di dunia. Diperkirakan setiap tahun jumlahnya akan terus bertambah. Salah satu pendeteksiannya adalah menggunakan ekspresi gen. Microarray dapat mengoleksi kumpulan besar ekspresi gen dalam satu waktu, sehingga DNA microarray mempunyai karakteristik data tersendiri, yaitu mempunyai dimensi data yang sangat besar dibanding dengan jumlah datanya. Oleh karena itu, dibutuhkannya sistem untuk menyelesaikan masalah tersebut. Pada penelitian ini, dibangun sistem yang mengimplementasikan ekstraksi fitur Partial Least Square (PLS) dan metode klasifikasi K-Nearest Neighbor - Support Vector Machines (KNN-SVM). Ekstraksi fitur berguna untuk mengurangi dimensi microarray yang sangat besar dengan membentuk data baru yang merupakan representasi data asli. Performansi sistem diukur menggunakan akurasi. PLS berhasil menaikkan akurasi dari classifier KNN-SVM. Nilai akurasi tertinggi yang didapatkan oleh PLS KNN-SVM adalah sebesar 96.17%.