Penelitian bidang bioinformatika menjadi populer saat ini sebagai solusi bagi dunia medis. Salah satunya klasifikasi penyakit kanker menggunakan data gene expression. Deep learning telah menjadi penelitian yang menarik pada bidang bioinformatika. Banyak penelitian tentang klasifikasi kanker yang diangkat menggunakan deep learning. Klasifikasi menggunakan data gene expression berguna di dunia medis. Karena dapat mengklasifikasikan penyakit hanya menggunakan gen. Penelitian ini mengangkat klasifikasi gene kanker menggunakan metode deep neural network dengan stacked spare autoencoder dan autoencoder sebagai metode extraksinya. Selain itu digunakan juga sparse autoencoder sebagai representasi dari pembelajaran neural network. Ini digunakan untuk mengurangi masalah saat pembelajaran. Fine-tune digunakan sebagai optimasi bobot dan bias untuk jaringan neural network dengan metode gradient descent. Pengklasifikasian hasil dari pembelajaran menggunakan softmax classifier. Data yang digunakan bersumber dari portal of National Center for Biotechnology Information. Jumlah dataset yang digunakan sebanyak 1065 sampel dari 8 kategori kelas untuk beberapa penyakit kanker dan non kanker. Dengan ini diperoleh hasil akurasi tertinggi 97,3 % untuk training dan 92,6 % untuk testing. Paralelisasi dari algoritma ini dapat bekerja dengan baik, dimana efesiensi terhadap waktu komputasi lebih cepat dengan speed up sekitar 13,03 terhadap komputasi sekuensial. Tentunya ini menjadi momentum untuk mengembangkan algoritma neural network lainnya dengan teknik paralelisasi.