Seiring berkembangnya teknologi saat ini, kita dapat memanfaatkan pengolahan citra digital sebagai cara untuk mendeteksi penyakit katarak. Pada pengolahan citra digital ini, akan dilakukan pengenalan suatu objek yang dapat dilakukan dengan mengenali algoritma tertentu.
Pada tugas akhir ini menggunakan pengolahan citra digital untuk mempercepat proses identifikasi penyakit katarak. Pada identifikasi ini akan menggunakan metode DCT (Discrete Cosine Transform). Metode ini merupakan suatu metode yang akan digunakan dalam proses pemampatan file citra, yaitu untuk mentransformasikan sebuah matriks citra dengan representasi lain serta dapat digunakan di daerah pengolahan digital untuk keperluan pengenalan pola. Kemudian menggunakan Jaringan Saraf Tiruan Backpropagation (JST Backpropagation) sebagai pengklasifikasi citra uji.
Hasil yang di peroleh adalah berupa sebuah simulasi perangkat lunak operasi matriks yang dapat digunakan untuk mengetahui dan mengklasifikasi mata katarak dengan akurasi sebesar 86,67% dengan waktu komputasi terbaik 3,666 detik menggunakan jumlah data latih dan data uji masing-masing 45 buah data, parameter orde satu standard deviation dan entropy, blok size DCT 5, saat epoch bernilai 1000, learning rate bernilai 1, dan hidden layer bernilai 5.