Manusia membutuhkan tidur untuk mengekang stress di dalam diri. Kurang tidur membuat mudah stress, cemas, dan juga tegang. Maka dari itu tidur yang cukup sangatlah penting. Saat tidur, otak beraktivitas, merespon, dan menghasilkan brainwave atau sinyal otak. Dalam tidur terbagi dua metode kondisi mata yaitu Rapid Eye Movement (REM) dan Non Rapid Eye Movement (NREM). Salah satu cara untuk mendeteksi dan merekam sinyal otak yang disebabkan oleh aktivitas neuron pada otak manusia adalah Electroencephalography (EEG). Oleh karena itu penelitian ini mengklasifikasikan kondisi kenyenyakan tidur pada sinyal EEG yang di ekstraksi ciri dengan HJORTH Descriptor. Setelah itu akan diklasifikasikan menggunakan Support Vector Machine.
Dalam mengklasifikasikannya penelitian ini mengambil data dari penelitian Analysis of a Sleep-Dependent Neuronal Feedback Loop: The Slow-Wave Microcontinuity of the EEG. Data ini sudah melalui tahap proses pre-procesing data yang ada di database, setelah itu menggunakan metode Hjorth Descriptor untuk mengekstraksi ciri fitur sinyal EEG dan diklasifikasi menggunakan SVM untuk melihat kondisi tidur tersebut termasuk dalam kategori nyenyak, kurang nyenyak, atau bahkan tidak nyenyak.
Dalam penelitian ini hanya mengambil 39 data yang terdiri dari 20 correspondent dan dalam 2 kondisi malam yang berbeda. Malam pertama perekaman tidur normal. Malam kedua perekaman tidur dengan diberikan obat tidur kepada correspondent. Penelitian ini membagi 3 situasi dalam setiap tidur correspondent. Situasi tersebut adalah 5 menit saat mulai tidur (keaadan lampu menyala), 60 menit saat lampu dimatikan, dan 60 menit sebelum terbangun. Penelitian ini memperoleh parameter keberhasilan 100% menggunakan kernel Linear SVM, menghasilkan keluaran kondisi tidur yang terdiri dari tidur nyenyak pada saat lampu dimatikan, tidur kurang nyenyak pada saat mau terbangun, dan tidur tidak nyenyak pada saat awal tidur.