Hadis merupakan hal yang wajib untuk dipelajari dan diamalkan oleh umat Islam. Terdapat banyak jenis ajaran yang dapat diambil oleh manusia dengan mempelajari hadis. Untuk membantu umat Islam dalam mempelajari hadis, dibutuhkan sistem klasifikasi multi label untuk mengategorikan Hadis Shahih Bukhari terjemahan bahasa Indonesia berdasarkan tiga topik yaitu larangan, anjuran dan informasi. Dalam membangun sistem klasifikasi teks, terdapat berbagai metode klasifikasi yang dapat digunakan, pada penelitian ini menggunakan Random Forest (RF). Kesederhanaan algoritma RF dan kemampuan yang baik dalam menghadapi data berdimensi tinggi, membuat RF merupakan metode yang cocok dalam melakukan klasifikasi teks. Namun belum banyak diketahui kemampuan RF untuk klasifikasi multi label. Penelitian ini menggunakan metode pendekatan Problem Transformation yaitu Binary Relevance (BR) dan Label Powerset (LP) untuk mengadaptasi RF dalam membangun sistem klasifikasi teks multi label. Hasil penelitian menunjukkan bahwa performansi hamming loss yang terbaik didapat dari sistem yang menggunakan BR dan tidak menggunakan stemming yaitu sebesar 0,0663. Hasil ini menunjukkan bahwa metode BR lebih baik daripada metode LP dalam mengadaptasi algoritma RF untuk melakukan klasifikasi multi label terhadap data hadis. Hal ini dikarenakan metode BR menghasilkan model klasifikasi sebanyak jumlah label pada data hadis dan pada sisi lainnya, hasil transformasi data dari penggunaan LP membuat data yang digunakan menjadi imbalanced.