Penyakit pernapasan masih menjadi pembunuh tertinggi setelah stroke dan penyakit jantung, hal ini disebabkan teknik diagnosis yang masih terbatas pada auskultasi. Melalui auskultasi ditemukan bahwa paru-paru memiliki suara yang berbeda-beda, sesuai dengan kondisi kesehatan seseorang. Oleh karena itu, dimulailah penelitian untuk mengklasifikasikan jenis suara paru. Berbagai metode telah digunakan untuk penelitian di bidang tersebut, tidak terkecuali deep learning. Diantara sekian banyak metode yang berkembang di bawah label deep learning, ternyata Autoencoder hanya digunakan sekali dalam sejarah penelitian klasifikasi data suara paru. Autoencoder (AE) merupakan salah satu arsitektur Deep Neural Network yang mampu merekonstruksi suatu data. Kemampuan ini dapat dimanfaatkan sebagai metode ekstraksi ciri sehingga classfier dapat mengklasifikasikan suatu data dengan lebih baik. Oleh karena itu, autoencoder diajukan sebagai metode ekstraksi ciri pada tugas akhir ini. Kemampuan Autoencoder sebagai metode ekstraksi ciri akan diuji oleh Support Vector Machine (SVM). Vektor ciri dipersiapkan dengan continouos wavelet transform (CWT) dan tiga pemrosesan lebih lanjut, lalu diinputkan ke dalam Autoencoder. Dari dua macam pengujian, sistem klasifikasi AE-SVM berhasil mencapai akurasi sebesar 82,38%.