Pengaruh Pelabelan Otomatis Berbasis Rating Terhadap Analisis Sentimen Data Ulasan Hotel

RUT MARIA SAHUBURUA

Informasi Dasar

149 kali
19.04.3526
006.312
Karya Ilmiah - Skripsi (S1) - Reference

Banyaknya ulasan terhadap suatu produk atau jasa, dalam hal ini ulasan hotel, dengan berbagai opini tidak mungkin dibaca satu persatu oleh pembaca ketika hendak memilih hotel. Solusi untuk permasalahan ini dapat dilakukan dengan analisis sentimen untuk mengekstrak opini pada ulasan hotel ke dalam polaritas ulasan positif dan negatif menggunakan algoritma klasifikasi Multinomial Naïve Bayes yang dinilai tepat untuk mengatasi permasalahan analisis sentimen karena pada formulanya kelas dokumen tidak hanya ditentukan dengan kata yang muncul tetapi juga dengan jumlah kemunculannya. Selain itu, pelabelan secara manual yang umumnya dilakukan pada kasus sentimen analisis dinilai kurang efisien dari segi waktu dan tenaga terlebih jika data yang digunakan dalam jumlah besar seperti data ulasan hotel yang digunakan dalam penelitian ini yaitu, sebesar 31317 data ulasan. Untuk itu metode pelabelan otomatis merupakan solusi yang dapat ditawarkan. Pelabelan otomatis yang digunakan pada penelitian ini berbasis rating review dengan metode binary dan average. Hasil utama pengujian pada penelitian ini dengan metode klasifikasi Multinomial Naïve Bayes dan fitur ekstraksi Particle Swarm Optimization serta metode pelabelan binary dan average secara berturut-turut adalah 86% dan 83.8%.

Kata kunci: ulasan hotel, multinomial naïve bayes, particle swarm optimization, pelabelan otomatis, binary, average

Subjek

Text mining
 

Katalog

Pengaruh Pelabelan Otomatis Berbasis Rating Terhadap Analisis Sentimen Data Ulasan Hotel
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

RUT MARIA SAHUBURUA
Perorangan
Yuliant Sibaroni
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2019

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini