Snakebite Images Classification Using Random Forest Classifier

ALIFIANDO DESTARA YUSUF

Informasi Dasar

86 kali
19.04.3634
621.367
Karya Ilmiah - Skripsi (S1) - Reference

As classification system continuously develop and improve, it is becoming more available to everyone. This leads to the increasing popularity of classification system and the increase of classification system usage in every field. The example of classification system implementations are face recognition, spam detection and image recognition. This work classifies snakebite images using random forest classifier based on image’s shape, texture, and color feature descriptor. Random forest classifier is used as it is supposed to have a good performance when it comes to handle a small amount of data. The final model yields f1 score of 100% with 75% 4-fold cross validation accuracy. The dataset is contained of 20 snakebite images and divided into 16 train data and 4 test data.

Keywords: Image Classification, Random Forest Classifier, Snakebite, Feature Descriptor, Classification System

Subjek

IMAGE PROCESSING
 

Katalog

Snakebite Images Classification Using Random Forest Classifier
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ALIFIANDO DESTARA YUSUF
Perorangan
Adiwijaya, Dody Qori Utama
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2019

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini