Analisis Performansi Algoritma Naïve Bayes dan Support Vector Machine untuk Deteksi Berita Hoax Berbahasa Inggris

RIAN PEBI

Informasi Dasar

133 kali
20.04.1065
006.31
Karya Ilmiah - Skripsi (S1) - Reference

Saat ini, Hoax berkembang dengan sangat masif. Berbagai media dijadikan tempat untuk Hoax beredar, salah satunya yaitu di berita. Banyak penelitian telah melakukan pendeteksian berita Hoax menggunakan klasifikasi teks, namun hanya menggunakan satu model klasifikasi saja. Pada penelitian ini, digunakan dua model klasifikasi yaitu Naïve Bayes dan Support Vector Machine. Penelitian ini menggunakan dataset yang berisi 1.381 record yang terdiri dari berita Hoax dan No Hoax berbahasa Inggris. Selanjutnya, dataset melalui praproses terlebih dahulu. Kemudian data hasil praproses diolah pada proses pembobotan kata. Hasil dari pembobotan kata kemudian diproses ke model klasifikasi Naïve Bayes dan Support Vector Machine. Validasi model klasifikasi menghasilkan akurasi 96,21% untuk Naïve Bayes dan 97,22% untuk Support Vector Machine untuk pembagian dataset (70% Trainset dan 30% Testset). Sedangkan untuk pembagian dataset (60% Trainset dan 40% Testset) menghasilkan akurasi 94,50% untuk Naïve Bayes dan 96,02% untuk Support Vector Machine. Perbedaan hasil akurasi dari dua model klasifikasi ini dikarenakan perbedaan cara kerja dan pembagian dataset. Model klasifikasi Naïve Bayes menggunakan metode probabilitas dengan Class yang tidak terkait (berdiri sendiri). Karena ketidakterkaitan antar Class, maka menyebabkan berkurangnya nilai akurasi. Sedangkan model klasifikasi Support Vector Machine menggunakan ruang berdimensi untuk mengelompokkan Class. Sehingga Class dapat terkait satu sama lain. Hal ini yang menyebabkan nilai akurasi dapat maksimal. Kedua model ini merupakan Supervised Learning. Artinya kedua model algoritma ini memerlukan pembelajaran agar dapat melakukan klasifikasi. Dalam hal ini, data yang digunakan untuk pembelajaran disebut Trainset. Semakin banyak data yang di train maka akan membuat pembelajaran algoritma semakin baik. Berdasarkan hasil penelitian, model klasifikasi Support Vector Machine menghasilkan akurasi yang lebih baik daripada Naïve Bayes.

Subjek

Machine Learning
 

Katalog

Analisis Performansi Algoritma Naïve Bayes dan Support Vector Machine untuk Deteksi Berita Hoax Berbahasa Inggris
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

RIAN PEBI
Perorangan
NIKEN DWI WAHYU CAHYANI, SY. YULIANI
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2020

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini