Classyfing Skin Cancer in Digital Images Using Convolutional Neural Network With Augmentation

ZEYHAN ALIYAH

Informasi Dasar

49 kali
20.04.1278
004
Karya Ilmiah - Skripsi (S1) - Reference

Skin cancer is a hazardous disease that can induces death if it is not taken care of immediately. The disease is hard to identified since the symptoms have similarities with other disease. An automatically classification system of skin cancer has been developed, but it still produced low accuracy. We use Convolutional Neural Network to enhance the accuracy of the classification. There are 2 main scenarios conducted in this research using HAM10000 dataset which has 7 classes. We compared ResNet and VGGNet architectures and obtained ResNet50 with augmentation as the best model with the accuracy of 99% and 99% macro avg.

Keywords: Convolutional neural network, classification, digital image, skin cancer

Subjek

COMPUTER SCIENCE
 

Katalog

Classyfing Skin Cancer in Digital Images Using Convolutional Neural Network With Augmentation
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ZEYHAN ALIYAH
Perorangan
ANDITYA ARIFIANTO, FEBRYANTI STHEVANIE
 

Penerbit

Universitas Telkom, S1 Ilmu Komputasi
Bandung
2020

Koleksi

Kompetensi

  • CCH1A4 - DASAR ALGORITMA DAN PEMROGRAMAN
  • CCH3F3 - KECERDASAN BUATAN
  • CSH3L3 - PEMBELAJARAN MESIN
  • CCH1D4 - STRUKTUR DATA
  • CII2B4 - STRUKTUR DATA
  • CII3C3 - PEMBELAJARAN MESIN
  • CPI2B4 - STRUKTUR DATA

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini