Media sosial yang sedang berkembang saat ini adalah twitter. Twitter merupakan media sosial yang di dalamnya berisikan informasi seperti biografi seseorang, informasi, tweet atau cuitan dari penggunanya. Informasi yang didapatkan dari twitter dapat dimanfaatkan untuk memprediksi suatu topik yang sedang tren atau trending. Pada penelitian ini membahas perbandingan metode pembobotan yang digunakan di suatu topik yang sedang trending topic yaitu TF-RF dan TF-IDF untuk memberikan suatu nilai/bobot pada term yang terdapat pada suatu dokumen. dan menggunakan metode pengklasifikasian dari data mining dimana metode yang digunakan adalah metode pengklasifikasian K-Nearest Neighbor, Hasil penelitian dilakukan berdasarkan berita dan percakapan diambil dari media twitter. Akurasi K-Nearest Neighbor nilai terbaik mengunakan K=1 dengan pembagian data training dan data testing (90:10) pembobotan TF-IDF adalah 63,12% dengan precision 0,633 dan recall 0,633 sedangkan TF-RF yaitu 62,48 % dengan precision 0,623 dan recall 0,623.