Kemiskinan menginterpretasikan salah suatu keadaan seseorang tidak mampu untuk memenuhi kebutuhan dasar mereka seperti halnya sandang, papan, pangan, kesehatan, dalam menuntut ilmu, dll. Badan Pusat Statistik atau lebih dikenal dengan sebutan BPS menggunakan konsep kemampuan untuk dapat memenuhi kebutuhan (basic needs approach) guna mengukur tingkat kemiskinan di Indonesia. Dengan menggunakan konsep ini, pengeluaran menjadi tolak ukur dari kemiskinan yang dipandang sebagai ketidakmampuan dari sisi ekonomi untuk memenuhi kebutuhan pangan dan non pangan, sehingga penduduk yang tidak mampu (miskin) adalah penduduk yang memiliki pengeluaran perkapita perbulan dibawah garis kemiskinan. Metode lain yang diusulkan penulis untuk melengkapi hasil survei dan sensus guna memprediksi kemiskinan di suatu daerah di Indonesia adalah menggunakan naive bayes dengan metode XGBoost dan Similarity Based berbasis e-commerce. Dalam percobaan yang telah dilakukan, nilainya cukup relevan antara fitur dan nilai asli. Banyaknya fitur yang terlalu sedikit tidak selalu menghasilkan nilai akurasi yang juga kecil, demikian juga sebaliknya, di mana penggunaan sejumlah besar fitur tidak selalu menghasilkan akurasi yang tinggi.
Kata Kunci: Kemiskinan, BPS, Naive Bayes, XGBoost, Similarity Based, data e- commerce.