Pengenalan Jenis Buah Berdasarkan Citra Menggunakan HOG dan Histogram HSV

INDRIANA FADHILA ASHARI

Informasi Dasar

91 kali
21.04.219
004
Karya Ilmiah - Skripsi (S1) - Reference

Mengenali berbagai jenis buah merupakan salah satu kegiatan yang sering terjadi di supermarket, ketika pegawai harus mampu mengenali tidak hanya jenis buah tertentu, tetapi juga variasinya sehingga mereka mampu menentukan harga dari buah tersebut. Namun, telah ditemukan adanya masalah seperti pegawai yang tidak dapat mengingat atau menghafalkan setiap kode buah dapat menyebabkan terjadinya kesalahan pada penentuan harga. Sehingga dibutuhkan sistem yang dapat mengenali atau mengklasifikasikan jenis buah secara otomatis melalui citra. Sistem ini dapat mengklasifikasikan 131 jenis buah dari dataset Fruits-360 yang terdapat keterkaitan antar kelas, seperti: tomat dan stroberi memiliki warna yang sama meskipun berbeda bentuk, serta apel braeburn dan apel golden dimana mereka memiliki bentuk yang hampir sama namun memiliki perbedaan pada hal warna. Citra dari buah akan diekstraksi fiturnya menggunakan Histogram of Oriented Gradient (HOG) dan Histogram HSV yang dipadukan dengan Random Forest (RF) sebagai metode klasifikasinya. Proses pelatihan yang telah dilakukan dengan 67.692 citra latih, memperoleh sebuah model yang dapat melakukan klasifikasi 131 jenis buah. Hasil prediksi yang dilakukan terhadap 22.688 citra uji dengan 131 jenis kelas berbeda ini dapat memprediksi kelas buah dengan akurasi hingga 98.11795%.

Subjek

IMAGE PROCESSING
 

Katalog

Pengenalan Jenis Buah Berdasarkan Citra Menggunakan HOG dan Histogram HSV
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

INDRIANA FADHILA ASHARI
Perorangan
Ema Rachmawat, Febryanti Sthevanie
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2021

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini