Tanaman sukulen merupakan jenis tanaman hias yang banyak ditemukan jenisnya di indonesia. Tanaman sukulen mempunyai banyak jenis genus yang dimana setiap genus mempunyai ciri dan karakteristik yang beragam sehingga sulit untuk mengidentifikasi jenis genus pada tanaman sukulen.Oleh karena itu, penulis membuat sebuah sistem yang dapat mengenali jenis genus tanaman sukulen melalui gambar menggunakan metode Convolutional Neural Network (CNN). CNN merupakan salah satu teknik deep learning yang dapat digunakan untuk mengenali objek dua dimensi seperti gambar dan video. CNN memiliki banyak jenis arsitektur jaringan, arsitektur jaringan CNN yang digunakan penulis untuk membangun sistem ini adalah custom arsitektur dan penulis juga menggunakan k fold cross validation yang bertujuan untuk memastikan keakuratan akurasi yang dihasilkan oleh model sistem. Penelitian dilakukan penulis dengan membandingkan antara model yang dilatih menggunakan dataset berwarna (RGB) dan model yang dilatih menggunakan dataset grayscale. Dari hasil penelitian didapatkan bahwa model yang dilatih menggunakan dataset berwarna mempunyai akurasi testing yang lebih tinggi dibandingkan dengan model yang dilatih menggunakan dataset grayscale. Akurasi testing yang dihasilkan model yang dilatih dengan dataset berwarna sebesar 93% sedangkan model yang dilatih menggunakan dataset grayscale sebesar 64%.