Plat nomor kendaraan bermotor merupakan tanda kendaraan bermotor di Indonesia. Pada plat nomor kendaraan di Indonesia terdiri dari kombinasi huruf dan angka, yang memiliki informasi kode wilayah, jenis/tipe kendaraan bermotor dan nomor registrasi dari kendaraan bermotor tersebut. Saat ini, jalan tol di Indonesia sudah menggunakan Automatic Vehicle Classification (AVC) untuk menentukan tarif dan golongan kendaraan bermotor di jalan tol yang diidentifikasi berdasarkan pada jenis/golongan kendaraan bermotor. Sistem AVC relatif menggunakan beberapa sensor dan tentunya membutuhkan biaya sensor yang bervariasi. Berdasarkan analisis tersebut, maka dibutuhkan sistem yang dapat mendeteksi jenis kendaraan bermotor di jalan tol. Pada penelitian ini, penulis menggunakan Vertical Edge Detection (VEDA) untuk mendeteksi lokasi plat nomor kendaraan bermotor, metode Connected Component Labelling (CCL) untuk mendeteksi dan mensegmentasi karakter pada plat dan metode K-Nearest Neighbor (KNN) untuk mengenali setiap karakter pada plat nomor kendaraan bermotor. Dataset yang digunakan pada pengujian ini berupa 162 dataset citra kendaraan dan 2.734 citra huruf dan angka sebanyak 36 kelas. Pada pengujian ini, sistem mampu mengenali jenis kendaraan bermotor berdasarkan nomor plat dengan akurasi sebesar 71,81%, recall sebesar 94,59%, precision sebesar 74,88% dan F1-Score sebesar 83,59%. Hasil tersebut menunjukan kelas terdeteksi dengan baik oleh model yang diusulkan dalam penelitian.