Speech Gender Classification Using Bidirectional Long Short Term Memory

RANGGA DWI ALAMSYAH

Informasi Dasar

57 kali
21.04.1241
128.2
Karya Ilmiah - Skripsi (S1) - Reference

Gender classification based on voice is crucial for speech recognition, which can be applied to various applications. It is generally developed using conventional machine learning and deep learning approaches. In this research, a gender classification model based on speech is developed using Bidirectional Long Short-Term Memory (BLSTM). The Mel Frequency Cepstral Coefficient (MFCC) is exploited to extract the features to train the BLSTM. Evaluation using a low dataset of 1,000 utterances, 500 males and 500 females, for five runs shows that the model is accurately capable of classifying the gender of the speakers. With a train-test split portion of 80:20, the model obtains an average accuracy of 86.7%, where the highest and the lowest accuracy are 90.5% and 81.0%, respectively. Reducing the portion decreases its performance. It is still stable for the 50:50 train-test split.

Subjek

Intellegence
 

Katalog

Speech Gender Classification Using Bidirectional Long Short Term Memory
 
pdf file
indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

RANGGA DWI ALAMSYAH
Perorangan
Suyanto
Indonesia

Penerbit

Universitas Telkom, S1 Informatika
 
2021

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini