Aspect-Based Sentiment Analysis in Beauty Product Reviews Using TF-IDF and SVM Algorithm

NADIRA PUTRI ARTHAMEVIA

Informasi Dasar

173 kali
21.04.1372
003.3
Karya Ilmiah - Skripsi (S1) - Reference

Product reviews are essential in e-commerce as they can help potential buyers make decisions prior to making purchases and help sellers get the measure of their products. A product can have thousands of reviews, making it burdensome for potential buyers and sellers to draw a conclusion from those abundant reviews. This research built a system that applies Aspect-based Sentiment Analysis (ABSA) with a dataset from product reviews on the Female Daily website. The system was built using TF-IDF as its feature extraction method combined with word bigram and word bigram. The Support Vector Machine (SVM) algorithm is used to classify the sentiments. This experiment results indicate that the preprocessing stage, especially the stemming and stopwords removal process are greatly affect the accuracy results. The choice of word N-gram is also crucial, where this research shows that the word unigram gives a higher accuracy than the word bigram. The final results of this research show that TF-IDF combined with word unigram and SVM with a linear kernel brings out the best accuracy, that is to say, 88.35%.

Subjek

COMPUTER SCIENCE
 

Katalog

Aspect-Based Sentiment Analysis in Beauty Product Reviews Using TF-IDF and SVM Algorithm
 
ill.; pdf file
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

NADIRA PUTRI ARTHAMEVIA
Perorangan
Adiwijaya, Mahendra Dwifebri P
Indonesia

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2021

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini