DEEP LEARNING UNTUK DETEKSI MALARIA PADA CITRA MIKROSKOPIS DARAH DENGAN MENGGUNAKAN ARSITEKTUR RESNET34

KAMIL FATIN M JHONI

Informasi Dasar

162 kali
21.04.2626
621.38 2
Karya Ilmiah - Skripsi (S1) - Reference

ABSTRAK Kematian akibat Malaria merupakan masalah serius. Dikutip dari pernyataan World Health Organization (WHO) pada tahun 2018 dilaporkan sekitar 219 juta kasus malaria telah terdeteksi di seluruh dunia dengan perkiraan 405.000 kasus yang berujung kematian. Diagnosis dini dan pengobatan pasien malaria menjadi urgensi yang tak bisa dikesampingkan karena dapat membantu menunda timbulnya gejala dan sebagai bentuk pencegahan terhadap penyakit Malaria. Pada penelitian ini dirancang suatu sistem deteksi Malaria dengan dua kelas yaitu terjangkit (Parasitized) dan tidak terjangkit (Uninfected). Sistem yang dirancang menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur ResNet34 dan Library Fast-ai berdasarkan citra mikroskopi darah sebagai masukannya Citra masukan yang digunakan pada penelitian ini adalah dataset yang diambil dari Kaggle dengan nama Malaria cell image datashet dengan total dataset yang digunakan yaitu 410 dimana 310 citra merupakan data train dan 100 citra merupakan data test. Selanjutnya dilakukan pre-processing terhadap Dataset untuk meningkatkan kualitas citra dan kemudian diproses. Parameter performansi sistem yang digunakan dalam pengujian yaitu Akurasi, Presisi, Recall, dan F1-score. Hasil performansi akurasi sistem dapat mencapai hasil maksimal yaitu 98% pada kondisi Resize citra 172×172 piksel, nilai Batch size 8, nilai Epoch 25, dan Learning rate 0,001.

Kata Kunci: Malaria Detection, Convolutional Neural Network, Deep learning, ResNet34, Fast-ai

Subjek

SIGNAL - PROCESSING
 

Katalog

DEEP LEARNING UNTUK DETEKSI MALARIA PADA CITRA MIKROSKOPIS DARAH DENGAN MENGGUNAKAN ARSITEKTUR RESNET34
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

KAMIL FATIN M JHONI
Perorangan
RITA MAGDALENA, NOR KUMALASARI CAECAR PRATIWI
Indonesia

Penerbit

Universitas Telkom, S1 Teknik Telekomunikasi
Bandung
2021

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini