Studi QSAR pada Inhibitor Falcipain sebagai Anti-malaria Menggunakan Genetic Algorithm-Support Vector Machine

MUHAMAD FARELL AMBIAR

Informasi Dasar

111 kali
22.04.3447
518.172
Karya Ilmiah - Skripsi (S1) - Reference

Malaria merupakan penyakit endemik berbahaya yang telah menginfeksi jutaan orang setiap tahunnya. Spesies parasit Plasmodium Falciparum bertanggung jawab atas kematian malaria terbanyak. Saat ini, sebagian besar obat anti-malaria yang tersedia kurang efektif karena meningkatnya resistensi parasit terhadap obat. Oleh sebab itu, agen anti-malaria baru dengan efisiensi yang tinggi untuk mengobati malaria sangat diperlukan. Enzim falcipain adalah protein target yang menjanjikan untuk mengembangkan obat anti-malaria baru. Namun, pengujian laboratorium konvensional untuk merancang obat baru membutuhkan waktu lama dan sangat mahal. Quantitative structure-activity relationship (QSAR) dapat digunakan untuk akselerasi proses desain obat. Pada penelitian ini dilakukan pengembangan model QSAR menggunakan genetic algorithm-support vector machine (GA-SVM) untuk memprediksi nilai pIC50 dari inhibitor falcipain. GA digunakan sebagai metode seleksi fitur, sedangkan SVM dengan optimasi hyperparameter digunakan sebagai metode untuk mengembangkan model prediksi QSAR. Model SVM dibangun menggunakan tiga kernel beda yaitu linear, radial basis function (RBF), dan polinomial. Validasi performa model dilakukan dengan menggunakan data internal dan data eksternal. Hasil validasi model menunjukkan bahwa performa terbaik dihasilkan oleh model RBF dengan nilai R2train pada data latih sebesar 0,98 dan nilai R2_test pada data uji sebesar 0,84. Sedangkan nilai leave-one-out cross-validation (Q2) adalah sebesar 0,85.

Subjek

BIOINFORMATICS
Biomedical-medical instruments,

Katalog

Studi QSAR pada Inhibitor Falcipain sebagai Anti-malaria Menggunakan Genetic Algorithm-Support Vector Machine
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MUHAMAD FARELL AMBIAR
Perorangan
Isman Kurniawan, Annisa Aditsania
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2022

Koleksi

Kompetensi

  • CS3243 - KECERDASAN MESIN DAN ARTIFISIAL
  • CII3C3 - PEMBELAJARAN MESIN
  • CII3L3 - PEMBELAJARAN MESIN LANJUT

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini