Di era digital ini orang-orang semakin mudah mendapatkan hiburan yang mereka perlukan salah satunya adalah anime. Anime merupakan animasi khas dari jepang anime bisa di buat baik di gambar menggunakan tangan atau menggunakan komputer. Anime menjadi salah satu hiburan yang banyak di sukai orang-orang di dunia, hal ini bisa di lihat dari Netflix salah satu layan streaming yang besar mulai memasukkan anime ke dalam aplikasi dan situs mereka. Pada tahun 2021 sekarang terdapat kurang lebih 18350 anime baik yang sudah selesai maupun yang masih berlanjut[2]. hal ini membuat orang-orang yang sudah menyukai anime ataupun orang-orang yang baru ingin menonton anime kebingungan mencari anime yang seusai dengan selera mereka karena itulah kita memerlukan sistem rekomendasi.
Sistem rekomendasi merupakan sistem yang dibuat untuk membantu pengguna mendapatkan rekomendasi sebuah barang/informasi yang pengguna sukai/butuhkah dari banyaknya barang ataupun informasi yang ada. Rekomendasi yang di berikan di harapkan bisa memberikan bantuan pada pengguna untuk dapat menentukan pilihan yang akan di ambil. Dalam sistem rekomendasi sendiri terdapat banyak metode yang bisa di gunakan salah satunya adalah metode collaborative filtering yang di gunakan untuk mencari kesamaan item/ barang yang di carik oleh user lain dengan algoritma yang digunakan adalah KNNWithMeans yang berupakan salah satu basic algoritma collaborative filtering.Pada penelitian ini dilakukan tiga skenario pengujian yang bergguna untuk mendapatkan hasil rekomendasi terbaik dengan melakukan pengukuran MAE dan NDCG.Dapat di simpulkan metode collaboratif filtering dengan menggunakan algoritma KNNWithMeans mendapatkan rekomendasi yang cukup akurat dengan hasil MAE terbaik sebesar 0.8989 dan NDCG sebesar 0.2028.