Analisis Deteksi Serangan DDoS Menggunakan Ensemble Learning dengan Algoritma XGBoost dan AdaBoost

GIAN MAXMILLIAN FIRDAUS

Informasi Dasar

220 kali
23.04.2652
005.8
Karya Ilmiah - Skripsi (S1) - Reference

Cyber attacks have been growing rapidly in every area of human life. A security system is necessary to prevent cyber attacks from causing chaos in the networks. DDOS is a well-known cyber attack that may intrude the networks. These attacks may leak sensitive data or disrupt operational per-formance causing enormous financial loss to the victim. The ensemble model is an important tool to enhance the learning process of machine learning models. This model will combine XGBoost and AdaBoost algorithms using XGBoost Classifier, AdaBoost Classifier, Decision Tree Classifier, and Voting Classifier. XGBoost and AdaBoost algorithms are used to analyze the data test, which will then be compared with the ensemble model. The best outcomes from the ensemble model yielded 94.88% accuracy, the XGBoost algorithm yielded 92.92% accuracy and the AdaBoost algorithm yield 92.96% accuracy. An ensemble model produces an enhanced signifi-cant accuracy around 2.03% - 2.06% concluding to the ex-periment results.

 

Keywords: DDoS, Machine Learning, Ensemble Model, AdaBoost, XGBoost

Subjek

CYBER-PHYSICAL SYSTEMS
 

Katalog

Analisis Deteksi Serangan DDoS Menggunakan Ensemble Learning dengan Algoritma XGBoost dan AdaBoost
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

GIAN MAXMILLIAN FIRDAUS
Perorangan
Vera Suryani
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2023

Koleksi

Kompetensi

  • CCH4D4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini