Penerapan Transfer Learning Pada Model Berbasis CNN Untuk Klasifikasi Aksara Sunda

MASAYU ANANDITA PRAMESWARI

Informasi Dasar

156 kali
23.04.3487
005.3
Karya Ilmiah - Skripsi (S1) - Reference

The Sundanese script is a cultural heritage of the Sundanese people that deserves to be preserved. With the advances in computer vision and deep learning, the study of Indonesian local character recognition still has room for improvement and therefore needs to be encouraged. In this study, the Sundanese script used was Swara and Ngalagena script. The classification of the Sundanese script poses a significant challenge due to the complexity and variability of the script's visual patterns. Therefore, this study classifies Sundanese script using the deep learning method, namely the Transfer Learning method based on the Convolutional Neural Network. The architectures used in this research are ResNet-50, VGG-19, and MobileNet. Then to evaluate the performance of the three architectures, the evaluation metrics used in this study are accuracy, precision, recall, and F1 scores will be used. This study conducted two experiments that added a layer, namely GlobalPooling2D, for the first experiment, and the second experiment added a Flatten layer. The three CNN architectures show very satisfactory results in classifying Sundanese script. The best accuracy results using the first experiment are achieving an accuracy value of 99% for the VGG-19 architecture. The ResNet-50 architecture is 87%, while the MobileNet architecture produces an accuracy of 60%. Overall, the VGG-19 architecture is the best in this study of Sundanese script classification.

 

Subjek

DEEP LEARNING
Learning - education, Machine Learning,

Katalog

Penerapan Transfer Learning Pada Model Berbasis CNN Untuk Klasifikasi Aksara Sunda
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MASAYU ANANDITA PRAMESWARI
Perorangan
Mahmud Dwi Sulistiyo, Aditya Firman Ihsan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2023

Koleksi

Kompetensi

  • CSH3L3 - PEMBELAJARAN MESIN
  • CII3L3 - PEMBELAJARAN MESIN LANJUT
  • CII4Q3 - VISI KOMPUTER

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini