Comparative Prediction of Physical Fatigue Patterns in Bandung (Indonesia) Workers using CNN and ANN - Dalam bentuk buku karya ilmiah

MUHAMMAD FIKRI RAIHAN ARDIANSYAH

Informasi Dasar

144 kali
24.04.746
001.64
Karya Ilmiah - Skripsi (S1) - Reference

This research explores the impact of physical fatigue on task performance and evaluates the effectiveness of Artificial Neural Network (ANN) and Convolutional Neural Network (CNN) in predicting fatigue levels. Physical fatigue, as a critical factor influencing performance and safety, serves as a signal for the body's need for rest. Utilizing a smartwatch with heart rate sensors, this study applies ANN for subjective fatigue assessments and CNN for time series analysis. With a structured approach encompassing data collection, preprocessing, and model training, a confusion matrix evaluates the model's performance. Results indicate an accuracy of 92.4% for the ANN model with an RMSE of 0.275, while the CNN model achieves an accuracy of 85.46% with an RMSE of 0.381. These findings affirm the effectiveness of both models in predicting fatigue, providing valuable insights for future research and emphasizing the importance of comprehensive data analysis for a nuanced understanding of individual performance (Number of data: 149,796 from 6 subjects).

Subjek

TUGAS AKHIR
 

Katalog

Comparative Prediction of Physical Fatigue Patterns in Bandung (Indonesia) Workers using CNN and ANN - Dalam bentuk buku karya ilmiah
 
 
INGGRIS

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MUHAMMAD FIKRI RAIHAN ARDIANSYAH
Perorangan
Gia Septiana Wulandari, Rifki Wijaya
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2024

Koleksi

Kompetensi

  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini