Komodo Mlipir Algorithm for Optimizing Hyperparameters of a Convolutional Neural Network - Dalam bentuk buku karya ilmiah

KHALILULLAH AL FAATH

Informasi Dasar

230 kali
24.04.840
621.382
Karya Ilmiah - Skripsi (S1) - Reference

This research focuses on hyperparameter optimization in Convolutional Neural Networks (CNNs) for image classification tasks. The primary objective is to propose a novel KMA-LeNet algorithm for optimizing hyperparameters in the LeNet-5 model without modifying its architecture. This method is evaluated by testing and comparing it with the conventional LeNet model on MNIST, Fashion-MNIST, and CIFAR-10 datasets. Experimental results demonstrate that KMA-LeNet achieves superior accuracy, particularly on the CIFAR-10 dataset, and shows high stability for large and small datasets. The results indicate a significant improvement in CNN accuracy for image classification tasks using KMA for hyperparameter optimization. It demonstrates the potential of KMA as an efficient and innovative approach for enhancing performance. Further research possibilities include the application of KMA to more complex architectures such as AlexNet and ResNet. Additionally, exploring KMA for variable-length encoding optimization is another avenue for future investigation.

Subjek

ARTIFICIAL INTELEGENCE
 

Katalog

Komodo Mlipir Algorithm for Optimizing Hyperparameters of a Convolutional Neural Network - Dalam bentuk buku karya ilmiah
 
 
INGGRIS

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

KHALILULLAH AL FAATH
Perorangan
Suyanto
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2024

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini