In Silico-based Toxicity Predicition using Camel Algorithm-Support Vector Machine: Case Study NR-AhR Toxicity Type - Dalam bentuk buku karya ilmiah

RENALDI MAHARDIKA PUTRA BAMBA

Informasi Dasar

134 kali
24.04.848
006.31
Karya Ilmiah - Skripsi (S1) - Reference

Toxicity assessment is a crucial aspect of drug development, evaluating the harm a compound may inflict on an organism, notably within organ systems like the liver. This study employs the Camel Algorithm for feature selection and the Support Vector Machine (SVM) method, specifically targeting NR-AhR toxicity. Utilizing the Tox21 Data Challenge dataset, a comprehensive exploration of three SVM kernel func- tions— Linear, Radial Basis Function (RBF), and Polynomial—is conducted, accompanied by thorough hyperparameter tuning. The results showcase improvements across all kernels, with the RBF kernel emerging as the most effective. The optimized model, integrating the Camel Algorithm and the RBF kernel in SVM, surpasses alternative approaches, demonstrating exceptional pre- dictive capabilities. Upon evaluation with test data, this refined model achieves an impressive accuracy of 0.921 and an F1-Score of 0.612. In summary, this research not only contributes to the ongoing enhancement of methodologies for toxicity prediction but also presents a robust approach within the NR-AhR dataset context. The findings underscore the significance of the Camel Algorithm and SVM in advancing safer and more effective pharmaceutical development, marking a significant stride in the field.

Subjek

Machine Learning
 

Katalog

In Silico-based Toxicity Predicition using Camel Algorithm-Support Vector Machine: Case Study NR-AhR Toxicity Type - Dalam bentuk buku karya ilmiah
 
 
INGGRIS

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

RENALDI MAHARDIKA PUTRA BAMBA
Perorangan
Isman Kurniawan, Widi Astuti
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2024

Koleksi

Kompetensi

  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini