Sentiment Analysis Accuracy for 2024 Indonesian Election Tweets Using CNN-LSTM With Genetic Algorithm Optimization - Dalam bentuk pengganti sidang - Artikel Jurnal

ATHALLAH ZACKY ABDULLAH

Informasi Dasar

262 kali
24.04.5582
005.7
Karya Ilmiah - Skripsi (S1) - Reference

AbstractBackground: The 2024 Indonesian Presidential Election is ideal for analyzing public sentiment on Twitter. Data collection began with crawling from the data source to create a dataset, which included 62,955 entries from Twitter, 126,673 entries from IndoNews, and a combined Tweet+IndoNews dataset totaling 189,628 entries. Objective: This study aims to explore sentiment using a hybrid model integrating Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) methods, with feature expansion via Word2Vec optimized by a Genetic Algorithm (GA). Methods: The research evaluates the effectiveness of the hybrid CNN-LSTM model in analyzing sentiment from 2024 Indonesian Presidential Election tweets, aiming for higher accuracy and deeper insights compared to traditional methods. Results: The hybrid CNN-LSTM model, optimized with a Genetic Algorithm, significantly enhances accuracy, achieving the highest accuracy of 84.78% for the news data, marking a 3.59% increase. Conclusion: This study illustrates the innovative application of a hybrid CNN-LSTM model with Word2Vec feature expansion and Genetic Algorithm optimization for sentiment analysis in a national election context, demonstrating how advanced techniques can improve accuracy and efficiency in sentiment analysis.
 

Subjek

DATA SCIENCE
 

Katalog

Sentiment Analysis Accuracy for 2024 Indonesian Election Tweets Using CNN-LSTM With Genetic Algorithm Optimization - Dalam bentuk pengganti sidang - Artikel Jurnal
 
,; il.: pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ATHALLAH ZACKY ABDULLAH
Perorangan
Erwin Budi Setiawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2024

Koleksi

Kompetensi

  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini