Tweet-based Depression Detection using BERT Optimized by Grey Wolf Optimization - Dalam bentuk buku karya ilmiah

ASTY NABILAH 'IZZATURRAHMAH

Informasi Dasar

142 kali
24.05.583
004
Karya Ilmiah - Thesis (S2) - Reference

Depression impacts around 280 million people worldwide. It is defined by enduringsadness and a persistent loss of interest. Limited access to treatment due to high costsand availability issues highlights the need for affordable early detection methods. Machine learning has shown promise in detecting depression, especially using text datafrom social media, where users share emotions openly. This study investigates the useof BERT, a transformer model, combined with the Grey Wolf Optimizer (GWO) todetect depression in tweets by applying a professionally re-labelled Kaggle dataset toenhance early detection. The optimized parameters include pre-trained models, batchsizes, and learning rates. This study reveals that the GWO significantly enhancesthe performance of BERT in text-based depression detection. The best performanceis achieved using BERT optimized by GWO; it is outperforming when using BERTalone. The best parameter combination, which achieves the best validation f1-score,is a model name called bert-base-cased-finetuned-mrpc, batch size of 64, and learningrate of 0.0001. The testing set results an accuracy of 0.8400 and precision, recall, andf1-score of 0.8356.

Subjek

DATA SCIENCE
 

Katalog

Tweet-based Depression Detection using BERT Optimized by Grey Wolf Optimization - Dalam bentuk buku karya ilmiah
 
xiv, 34p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ASTY NABILAH 'IZZATURRAHMAH
Perorangan
Isman Kurniawan
 

Penerbit

Universitas Telkom, S2 Informatika
Bandung
2024

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini