Impact of Feature Selection on XGBoost Model with VGG16 Feature Extraction for Carbon Stock Estimation Using GEE and Drone Imagery - Dalam bentuk pengganti sidang - Artikel Jurnal

I MADE DARMA CAHYA ADYATMA

Informasi Dasar

93 kali
25.04.371
000
Karya Ilmiah - Skripsi (S1) - Reference

Carbon stocks are critical to climate change mitigation by capturing atmospheric carbon and storing it in biomass. However, carbon stock estimation faces challenges due to data complexity and the need for efficient analytical methods. This study introduces a carbon stock estimation method that integrates the XGBoost algorithm with VGG16 feature extraction and feature selection techniques to analyze GEE and Drone image datasets. The model is evaluated through four scenarios: without feature selection, using Information Gain, using Feature Importance, and using Recursive Feature Elimination. These scenarios aim to compare feature selection methods to identify the best one for processing complex environmental data. The experimental results show that RFE significantly outperforms other methods, achieving an average RMSE of 6651.62, MAE of 2297.57, and R² of 0.7673. These findings underscore the importance of feature selection in optimizing model performance, particularly for high-dimensional environmental da

Subjek

Machine Learning
 

Katalog

Impact of Feature Selection on XGBoost Model with VGG16 Feature Extraction for Carbon Stock Estimation Using GEE and Drone Imagery - Dalam bentuk pengganti sidang - Artikel Jurnal
 
15p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

I MADE DARMA CAHYA ADYATMA
Perorangan
Erwin Budi Setiawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CCH4D4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini