Support Vector Machine and Naïve Bayes for Personality Classification Based on Social Media Posting Patterns - Dalam bentuk pengganti sidang - Artikel Jurnal

BAYU SENO NUGROHO

Informasi Dasar

49 kali
25.04.384
000
Karya Ilmiah - Skripsi (S1) - Reference

This research investigates the use of Support Vector Machine (SVM) and Naive Bayes models to classify the personality traits based on the social media posting patterns. This study integrates textual features obtained from the Bag-of-Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF) methods, and along with the feature expansion using the Linguistic Inquiry and Word Count (LIWC) tool, to assess their influence on accuracy Classification Personality characteristics were mapped from social media posts using the Big Five Inventory (BFI-44). The research findings show that the SVM model in which uses the TF-IDF + LIWC feature set, provides the best performance, and achieve 76.60% of accuracy on the base model with a linear kernel. In comparison to the Naive Bayes model performed best with the same feature set, achieving 59.57% accuracy with a smoothing
parameter of 1xE-2. Although the oversampling improved recall and precision, the undersampling was found to have a negative effect on model pe

Subjek

DATA SCIENCE
 

Katalog

Support Vector Machine and Naïve Bayes for Personality Classification Based on Social Media Posting Patterns - Dalam bentuk pengganti sidang - Artikel Jurnal
 
18p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

BAYU SENO NUGROHO
Perorangan
Warih Maharani
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII4G3 - PEMROSESAN BAHASA ALAMI
  • CSH4H3 - PENAMBANGAN TEKS
  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini