Optimizing LSTM Models with FastText Feature for Sentiment Analysis of Indonesia’s 2024 Regional Elections on X - Dalam bentuk pengganti sidang - Artikel Jurnal

KHARISMA AYU

Informasi Dasar

120 kali
25.04.428
000
Karya Ilmiah - Skripsi (S1) - Reference

The 2024 Regional Elections in Indonesia have sparked significant public discourse, generating polarized opinions as citizens actively discuss political issues, particularly on social media platforms such as X. Sentiment analysis is essential to enhance the understanding of opinion polarization reflected in these discussions. This research applies hyperparameter tuning on Long Short-Term Memory (LSTM) models enhanced with FastText feature expansion to optimize sentiment analysis accuracy for tweets about Indonesia's 2024 Regional Elections. A dataset of 60,000 tweets was collected and labeled into positive, negative, or neutral sentiments. The research involves TF-IDF feature extraction, FastText feature expansion with top similarities of 1, 5, and 10 of Tweet, Indonews, and Tweet+Indonews corpus, followed by hyperparameter tuning to optimize LSTM parameters, including number of layer, hidden size, learning rate, and epoch. The optimized LSTM models, using a top 5 similarities in the Indonews corpus, achieved

Subjek

DATA SCIENCE
 

Katalog

Optimizing LSTM Models with FastText Feature for Sentiment Analysis of Indonesia’s 2024 Regional Elections on X - Dalam bentuk pengganti sidang - Artikel Jurnal
 
8p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

KHARISMA AYU
Perorangan
Erwin Budi Setiawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini