Transparency in Detecting Man-in-the-Middle Attacks on SS7 Networks Using SHAP Explainable AI - Dalam bentuk buku karya ilmiah

FAUZAN RIZQI MUHAMMAD

Informasi Dasar

62 kali
25.04.432
000
Karya Ilmiah - Skripsi (S1) - Reference

This study addresses the security vulnerabilities inherent in the SS7 protocol, with a specific focus on mitigating Man-in-the-Middle (MITM) attacks. Despite technological advancements, persistent security issues in Signaling System No. 7 (SS7) underscore the need to enhance user protection and minimize risks. The primary objective is to leverage Explainable Artificial Intelligence (XAI) to make AI decisions in telecommunications more transparent and justifiable. This research is using advanced machine learning algorithms, including Random Forest, Autoencoders, and K-Means Clustering, integrated into SHapley Additive exPlanations (SHAP) to enhance the interpretability of AI models. The limited availability of specific SS7 datasets forces this study to use existing dataset that was used by another study. The research methodology involves data collection and pre-processing, followed by the implementation and optimization of algorithms to effectively detect and analyze vulnerabilities. The integration of XAI aim

Subjek

TUGAS AKHIR
 

Katalog

Transparency in Detecting Man-in-the-Middle Attacks on SS7 Networks Using SHAP Explainable AI - Dalam bentuk buku karya ilmiah
 
23p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

FAUZAN RIZQI MUHAMMAD
Perorangan
Parman Sukarno, Aulia Arif Wardana
 

Penerbit

Universitas Telkom, S1 Informatika (International Class)
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini